Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Farkhanda Shaheen, ${ }^{\text {a }}$

Muhammad Najam-Ul-Haq, ${ }^{\text {b }}$ Amin Badshah, ${ }^{\text {a }}{ }^{*}$ Klaus Wurst ${ }^{\text {c }}$ and Saqib $\mathrm{Ali}^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan,
${ }^{\mathbf{b}}$ Department of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and
${ }^{\text {c Institute of General, Inorganic and Theoretical }}$ Chemistry, Innrain 52a, University of Innsbruck, A-6020 Innsbruck, Austria

Correspondence e-mail:
aminbadshah@yahoo.com

Key indicators

Single-crystal X-ray study
$T=233 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
H -atom completeness 91%
Disorder in solvent or counterion
R factor $=0.033$
$w R$ factor $=0.074$
Data-to-parameter ratio $=18.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Chloro(pyrimidine-2-thiolato- ${ }^{2} N, S$)-(triphenylphosphine-кP) palladium(II) methanol hemisolvate

In the title compound, $\left[\mathrm{Pd}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{~S}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$-$0.5 \mathrm{CH}_{3} \mathrm{OH}$, the Pd atom is four-coordinate and exhibits a slightly distorted square-planar geometry with the S atom of the pyrimidine-2-thiolate ligand trans to the chloro ligand and the coordinated N atom trans to the phosphine. The compound crystallizes with two unique molecules and a disordered methanol solvent molecule in the asymmetric unit.

Comment

Palladium(II) complexes with heterocylic thione ligands are of current interest for the synthesis of clinically useful drugs (Raper et al., 1985). The crystal structures of four-coordinate palladium(II) complexes with N - and S -donor heterocyclic 2thionate ligands, such as $\mathrm{Pd}_{2}\left(2-\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}(\mu-\mathrm{OH})(\mu-$ $\mathrm{Br})$ (Ruiz et al., 1996) and (2-benzylpyridinethiosemicarbazone)palladium(II) have been extensively investigated (Rebolledo et al., 2005). The title compound, (I), exhibits antibacterial and antitumor activity (Krischner et al., 1966) due to the $\mathrm{N}-\mathrm{C}-\mathrm{S}$ group generated by deprotonation of the heterocyclic thione (Santana et al., 2000). It has also been used as a pesticide (Fackler, 2002) and an antimicrobial agent (Ronconi et al.; 2005).

In the title compound, each Pd atom of the two unique molecules in the asymmetric unit is four-coordinate and exhibits a slightly distorted square-planar geometry (Fig. 1). The two molecules are similar except for the conformational orientation of the triphenylphosphine ligand, shown by the torsion angles $\mathrm{S} 1-\mathrm{Pd} 1-\mathrm{P} 1-\mathrm{C} 5\left[5.4(1)^{\circ}\right]$ and $\mathrm{S} 2-\mathrm{Pd} 2-$ $\mathrm{P} 2-\mathrm{C} 27\left[-19.9(1)^{\circ}\right]$. The pyrimidine-2-thiolate ligand acts as a bidentate chelate, coordinating to Pd via the S1 atom and the adjacent pyrimidine N 1 atom. Atom S 1 is trans to the chloro ligand and N 1 is trans to the triphenylphosphine ligand (Table 1). The slightly distorted square-planar geometry of the Pd atoms is also revealed by the displacements of the Pd atoms from the mean planes through the ligand donor atoms of

Received 14 November 2005 Accepted 13 December 2005 Online 21 December 2005
0.0876 (7) \AA for Pd1 and 0.0893 (6) \AA for Pd2. These deviations may be related to weak intermolecular interactions between Pd1 and N3 [3.660 (2) A $]$, and between Pd2 and S1 [3.9498 (9) Å].

Experimental

Pyrimidine-2-thione ($0.16 \mathrm{~g}, 1.14 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise to a suspension of $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)\right](0.5 \mathrm{~g}$, $1.14 \mathrm{mmol})$ (Kitano et al., 1983) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. The resulting solution was refluxed for $2-3 \mathrm{~h}$ and a clear solution was obtained. Yellow crystals were obtained by slow evaporation of the solvent at room temperature.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{~S}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right] \cdot-$
$\quad 0.5 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=531.29$
Monoclinic, $P 2_{1} / c$
$a=16.1340(2) \AA$
$b=9.7020(1) \AA$
$c=29.0480(4) \AA$
$\beta=102.617(1)^{\circ}$
$V=4437.14(10) \AA^{3}$
$Z=8$
$D_{x}=1.591 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 26420
\quad reflections
$\theta=1.0-27.5^{\circ}$
$\mu=1.14 \mathrm{~mm}^{-1}$
$T=233(2) \mathrm{K}$
Prism, yellow
$0.35 \times 0.25 \times 0.08 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: none
26420 measured reflections
9812 independent reflections
8231 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.033 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-20 \rightarrow 20 \\
& k=-12 \rightarrow 12 \\
& l=-37 \rightarrow 36
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0217 P)^{2}\right. \\
\quad+4.762 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \mathrm{~A}^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.63 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The structures of the two unique complex molecules of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The solvent molecule has been omitted.
disordered methanol solvent molecule. The disorder, with fixed occupancy of 0.75 for O 1 and 0.25 for $\mathrm{O} 1 A$, was resolved by varying the occupancy factors of both O -atom positions until their isotropic displacement parameters refined to a similar value. A final refinement was accomplished with fixed occupancy factors and anisotropic displacement parameters for the O -atom positions. The H atoms of this solvent molecule, which would have poor resolution and large displacement parameters, were not included in this refinement.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

We thank the Institute of Higher Education Commission for financial support of this work.

References

Fackler, J. P. (2002). Inorg. Chem. 41, 6959-6972.
Kitano, Y., Kinoshita, Y., Nakamura, R. \& Ashida, T. (1983). Acta Cryst. C39, 1015-1017.
Krischner, S., Wei, Y. K., Francis, D. \& Beryman, J. G. (1966). J. Med. Chem. 9, 369-372.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Raper, E. S. (1985). Coord. Chem. Rev. 61, 115-184.
Rebolledo, A. P., Vieites, M., Gambino, D., Piro, O. E., Castellano, E. E., Zani, C. L., Souza-Fagundes, E. M., Texixeiera, L. R., Batista, A. A. \& Beraldo, H. (2005). J. Inorg. Biochem. 99, 698-706.

Ronconi, L., Maccato, C., Barreca, D., Saini, R., Zancato, M. \& Fregona, D. (2005). Polyhedron, 24, 521-531.

All C-bound H atoms were refined using a riding model, with C $\mathrm{H}=0.94 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The asymmetric unit contains a

metal-organic papers

Ruiz, J., Culillas, N., Samperdro, J., Lopez. G., Martinez, A., Hermoso, J. A. \& Martinez-Ripoll. M. (1996). J. Organomet. Chem. 526, 67-72.
Santana, M. D., Gabriel García, G., Rufete, A., Ramírez de Arellano, M. C. \& López, G. (2000). J. Chem. Soc. Dalton Trans. pp. 619-625.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography

